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Abstract: There exist cislunar and trans-lunar libration points near the Moon, which are referred as the LL1 and LL2 points 

respectively and can generate the different types of low-energy trajectories transferring from Earth to Moon. The 

time-dependent analytic model including the gravitational forces from the Sun, Earth and Moon is employed to investigate 

the energy-minimal and practical transfer trajectories. However, different from the circular restricted three-body problem, 

the equivalent gravitational equilibria are defined according to the geometry of instantaneous Hill’s boundary due to the 

gravitational perturbation from the Sun. The relationship between the altitudes of periapsis and eccentricities is achieved 

from the Poincaré mapping for all the lunar captured trajectories, which presents the statistical feature of the fuel cost and 

captured orbital elements rather than generating a specified Moon-captured segment. The minimum energy required by the 

captured trajectory on a lunar circular orbit is deduced in the spatial bi-circular model. It is presented that the asymptotical 

behaviors of invariant manifolds approaching to/from the libration points or halo orbits are destroyed by the solar 

perturbation. In fact, the energy-minimal cislunar transfer trajectory is acquired by transiting LL1 point, while the 

energy-minimal trans-lunar transfer trajectory is obtained by transiting LL2 point. Finally, the transfer opportunities for the 

practical trajectories escaped from the Earth and captured by the Moon are yielded by transiting halo orbits near LL1 and LL2 

points, which can be used to generate the whole trajectories. 
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1. Introduction 

Previous researches on cislunar transfer trajectories from the Earth to Moon in the context of 

two-body dynamics reached the conclusion that the spacecraft has to be accelerated up to the 
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hyperbolic velocity so as to escape the Earth’s gravitational force; while some recent researches from 

the viewpoint of the restricted circular three-body problem (abbr. CR3BP) showed that the hyperbolic 

velocity is not the necessary condition for the cislunar transfer (Koon et al. 2007). Compared with the 

Hohmann transfer, the ballistic trajectory captured trajectory known as one type of low-energy transfer 

trajectories (Xu and Xu 2009), which is obtained within the context of CR3BP, has lower fuel 

consumption but longer transfer duration. 

Conley studied the local dynamical behavior of planar CR3BP near the collinear libration point and 

classified all the trajectories into four different types as: periodical orbit (named as Lyapunov orbit), 

stable/unstable manifolds of periodic orbit, transiting and non-transiting trajectories (Conley 1968). It 

is concluded from Conley's work that the invariant manifolds of periodic orbits will separate transiting 

and non-transiting trajectories, and only the transiting ones can be employed to generate the low-energy 

cislunar transfer trajectories. 

McGehee investigated the global dynamical behavior of CR3BP and achieved the similar results, 

i.e., the stable and unstable manifolds of Lyapunov orbit form a 2-dimensional hyper-surface in the 

3-dimensional Euclidean space which may play a significant role in understanding the transiting 

trajectories (McGehee 1969). Based on the preliminary work of Conley and McGehee, Marsden and 

Ross extended and thoroughly investigated the dynamical structure near the libration point, and 

denoted the invariant manifolds as Conley–McGehee tubes (abbr. C-M tube) in order to memorize their 

contributions (Marsden and Ross 2006). Yamato demonstrated that most of the tubes are distorted but 

few of them are preserved by small perturbations from the perturbed gravitation of the third celestial 

body (Yamato 2003). 

Several scholars were devoting to the topic on some transiting trajectories near LL1 point, since 

Conley had achieved the low-energy cislunar trajectories from the viewpoint of LL1 point (Conley 

1969). Bolt and Meiss obtained a low-energy cislunar transfer trajectory by the shooting method 

developed in chaotic dynamics with the total fuel consumption of V =750m/s and the flight duration 

of t =748 days (Bolt and Meiss 1995). Schroer and Ott improved the shooting method to achieve the 

transfer trajectory with similar fuel consumption but cutting off half of the transfer time (t =377.5 

days) (Schroer and Ott 1997). Macau gained a transfer trajectory with a little more fuel consumption 

but much less transfer time than Schroer and Ott, i.e., V =767m/s and t =284 days (Macau 1998). 

Ross and Koon optimized the transfer time and fuel consumption to yield the better result, i.e., V 

=860m/s and t =65 days (Ross and Koon 2003). Topputo and Vasile employed the Lambert equation 
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in CR3BP to solve the two-point boundary problems and obtained the similar result with Ross and 

Koon (Topputo and Vasile 2005). Xu et al. investigated the occurrence condition for low-energy 

transfer and discovered that the transiting trajectories near LL1 point are preferred to generate the 

low-thrust cislunar trajectory (Xu et al. 2012). 

On the other hands, Belbruno et al. raised a new type of trans-lunar trajectories by the numerical 

method, which has a great application in rescuing Japanese lunar spacecraft "Hiten" in 1991 and then is 

referred as the weak stability boundary (abbr. WSB) trajectory (Belbruno and Miller 1993; Belbruno 

2004). The WSB trajectory is considered as a significant contribution to celestial mechanics, and more 

analytic or semi-analytic investigations were implemented on this theory by Circi and Teofilatto 

(2001), Yagasaki (2004), Parker and Lo (2005), and García and Gómez (2007). 

Koon et al. investigated the long-term evolutions of C-M tubes under the gravitational perturbation 

from the Sun, and divided the restricted four body problem into two different CR3BPs, i.e., the 

Sun-Earth/Moon system and the Earth-Moon system (Koon et al. 2001). A magic result was achieved 

that a Belbruno's WSB trajectory can be generated from the stable manifolds near EL1 (or EL2) point 

and the unstable manifolds near the trans-lunar LL2 point, with the assist of the numerical tool of 

Poincaré mapping. 

Different from the above researches focusing on only one specified Earth-to-Moon transfer 

trajectories, a systematic discussion on both cislunar and trans-lunar trajectories are implemented in the 

context of restricted four-body dynamics in this paper. The statistical features of the fuel cost and 

captured orbital elements, like altitude of periapsis and eccentricity, are investigated by the tool of 

Poincaré mapping rather than a specified Moon-captured segment. Compared to CR3BP and Hill's 

model, both the cislunar and trans-lunar trajectories with the minimum energy are deduced in a spatial 

analytical four-body model including the gravitational forces from the Sun, Earth and Moon. It is 

presented that the asymptotical behaviors of invariant manifolds approaching to/from libration points or 

halo orbits are destroyed in the time-independent model. The energy-minimal and practical cislunar 

transfer trajectories are acquired by transiting LL1 point and halo orbits near the point respectively; 

however, the energy-minimal and practical trans-lunar transfers are obtained by transiting LL2 point and 

halo orbits near the point. Furthermore, the transfer opportunities for the practical trajectories escaped 

from the Earth and captured by the Moon are yielded by transiting halo orbits near LL1 and LL2 points, 

which can be used to generate the whole trajectories. 
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2. Lunar Capturing Trajectories in Spatial Bi-Circular Model 

Compared with the Hohmann direct transfer employed by Apollo (NASA) and Chang'E (China) 

missions, the low-energy WSB transfer requires more fuels in the accelerating maneuvers, and then 

much less fuel cost in the decelerating maneuvers, which will make the WSB type of lunar transfer 

trajectories more economic than the Hohmann type. Therefore, Belbruno and Miller (1993), and 

García and Gómez (2007) proposed the concept of lunar temporary capturing trajectories to measure 

the opportunity of a spacecraft to transferring from the Earth to Moon, which owns the somewhat 

higher energy than the libration point LL1 or LL2. When the spacecraft on the Hohmann trajectory 

arrives at the Moon, its flight velocity is hyperbolical and its osculating eccentricity is greater than 1, 

hence the spacecraft owns much higher energy than LL2 point. However, the low-energy trajectories are 

elliptical since their osculating eccentricities are less than 1 during the flight, so that the spacecraft will 

keep orbiting the Earth with several loops before transiting the libation point, and also keep orbiting the 

Moon after transiting the point. Thus, the fuel cost of the lunar temporary capture turning into 

temporary capture is smaller than the Hohmann transfer. 

An analytic spatial bi-circular model (abbr. SBCM) including the gravitational forces from the Sun, 

Earth and Moon is developed in this section, and then a systematical discussion on Moon-captured 

energy in this model is implemented by the tool of numerical Poincare mapping; however, no specific 

trajectory is referred in this section. 

2.1 The definition of SBCM 

The SBCM originates from the planar bi-circular model developed by Koon et al. (2001) and the 

quasi bi-circular model by Andreu (1999); specially, the SBCM shows significant improvements in the 

inclination between the ecliptic and lunar planes. Compared with the three models referred above, the 

SBCM has the following assumptions: i) The Earth and Moon act as different simple gravitational 

points, and move around their barycenter in Kepler circular motions with their eccentricities ignored; ii) 

The barycenter of the Earth-Moon system stays circumsolar in the ecliptic plane with its eccentricity 

ignored; iii) The inclination of the lunar plane relative to the ecliptic plane is considered with an 

average angle of 59'. 

In order to reduce the computational work in Kepler circular motions under the Sun-Earth/Moon 

and Earth-Moon systems, three different coordinates are introduced in this paper, as shown in Fig.1. 
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The inertial IS-E/M frame with its components (X, Y, Z) is defined as following: the origin is fixed at the 

barycenter of the Sun-Earth/Moon system, and the axis X is along the intersection of the ecliptic and 

lunar planes, which follows an inertial direction in the system, and the axis Z is perpendicular to the 

lunar plane and along the revolution axis of the Earth-Moon system, and the axis Y is determined by the 

right-hand-side rule. Inheriting from IS-E/M, a new inertial frame IE-M has the same definition of the 

three axes, but fixes its origin at the barycenter of the Earth-Moon system. The syzygy SS-E/M frame 

with its components (, , ) is defined as following: the origin is fixed at the barycenter of the 

Sun-Earth/Moon system, and the axis  points from the Sun to the barycenter of the Earth and Moon, 

the axis  is perpendicular to the ecliptic orbital plane, and the axis  is determined by the 

right-hand-side rule. The syzygy SE-M frame with its components (x, y, z) is defined as following: the 

origin is fixed at the barycenter of the Earth-Moon system, and the axis x points from the Earth to the 

Moon, and the axis z is perpendicular to the lunar plane and along the revolution axis of the 

Earth-Moon system, and the axis y is determined by the right-hand-side rule. 

 

Fig.1 The geometrical view of the SBCM model: the inclination of the lunar plane relative to the ecliptic plane 

is considered with an average angle of 59'; the solar phasic angle  measures the included angle between 

the line from the Earth to Moon and the intersecting line of the ecliptic and lunar planes; the lunar phasic 

angle s measures the included angle between the line from the Sun to the barycenter of the Earth-Moon 

system and the intersecting line of the ecliptic and lunar planes; the ecliptic plane is painted in yellow color, 

while the lunar plane is painted in green color. 

The equations derived in this paper can be normalized by means of the characteristic length, time 

and mass, as following: 
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where mE and mM are the mass of the Earth and Moon, respectively; LE-M is the average distance 

between the Earth and Moon; G is the universal gravitation constant. 

 TI ZYXR ,  T  and  Tzyxr  are defined as the position vector of 

the spacecraft in the rotating frames IS-E/M, SS-E/M and SE-M, respectively. Therefore, the position vector 

from the Sun to the origin of the barycenter in the frame IS-E/M can be expressed as 

   TSSsS a 0sincos1 SA , where as (=388.81114 in the length unit normalization mentioned 

above) is the average distance between the heliocenter and the barycenter of the Earth-Moon system, 

and s (=3.04035714310-6) is the mass ratio of the Earth-Moon system with respect to the full 

Sun-Earth-Moon system. i (=59') is the inclination between the ecliptic and lunar planes. s is defined 

as the lunar phasic angle measured between the line from the Sun to the barycenter of the Earth-Moon 

system and the intersecting line of the ecliptic and lunar planes, and  is defined as the solar phasic 

angle measured between the line from the Earth to Moon and the intersecting line. In this paper, the 

initial lunar angle s0 is set as 00 at the moment t0=0, while the initial value of the solar angle 0 is 

selected as the time variable to investigate Earth-to-Moon transfers in the time-dependent SBCM 

model in the following sections. 

According to the defined coordinate systems and SBCM assumptions, the required relationship 

between the spacecraft's position vector r,  and RI are listed as: 

   IS RR z  (1) 

     SI ArRRR  zx i  (2) 

where  zR  and  xR  are the elementary transformation matrixes around the Z (or z) and X (or x) 

axes respectively. Thus, the Newtonian dynamics in the unit normalization is formulized as following: 
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where  (=0.0121516) is the mass ratio of the Moon with respective to the Earth-Moon system, and 

 TSSS a 00  is the position vector of the Sun in the frame SS-E/M. The kinematics 

formulized by Eqs. (1) and (2) can be used to deduce the dynamical equation, as 
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where s (=0.0748 in the time unit normalization) is the angular velocity of the Earth-Moon system 

with respect to the inertial reference system, and ms (=328900.54) is the Sun's mass in the mass unit 

normalization, and the position vectors of the Earth and Moon in SE/M can be expressed as 

 TE 00- r  and  TM 00-1 r . 

Both of the CR3BP and SBCM models are classified as the conservative Hamiltonian systems 

without any external forces. Thus, the Newtonian dynamics can be deduced from the Hamiltonian 

function H1 equivalently as 
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where  Tzyx pppp  is the generalized momentum, defined by the position and velocity vectors 

r  and r  as 
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Thus the Hamiltonian function H1 can be resolved from Eqs. (4) and (5), as 
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where H0 is the Hamiltonian function modeling the dynamics of CR3BP, and the other terms are 

considered as the perturbation from the solar gravity, and the term S  can be reproduced as: 

         CS
T

Szxsz
T

SS raaia  2001 2 rrrRRR   (8) 

where rc is defined as      rRR   zxSSC ir 0sincos , which has the same order of 

magnitude as r , but is smaller than r  (i.e., rCr ). 

Moreover, H0, which can be found in textbooks, has the general form: 
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The solar gravity brings periodic perturbation into the dynamics of CR3BP, which can be characterized 

by the difference between the two Hamiltonian functions. For a spacecraft flying inside the Earth-Moon 

system with its distance ||r|| from the system barycenter much shorter than as, i.e., ||r||<<as, the 

difference H has the following expression as 
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where the second term can be simplified as 
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and the third term can be simplified by the Kepler's third law, as 
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Therefore, the difference H can be refined as 

 










































SS

S

SS

C

SS

S

a
O

a

m

a
O

a

r

aa

m
H

2

24

3

3

22

2 2

3

2

rrr
. (13) 

For the trajectories inside the Earth-Moon system discussed in this paper, the magnitude of r is close to 

1 according to the length unit normalization, i.e., ||r||1. Hence, for the halo orbits employed in this 

paper, the following fact can be obtained from their Hamiltonian values of H0 (-1.6 presented in 

Section 2.2) that H/H0 is of 10-3 order of magnitude, which can be considered as a small perturbation 

onto the Hamiltonian system H0. 

2.2 The definition of equivalent libration points in SBCM 

The SBCM dynamics is time-dependent due to the periodic perturbation from the solar gravitation, 

compared to the time-independent CR3BP dynamics (Koon et al. 2007; Belbruno 2004). 

Consequently, there are no equilibrium point existing in this gravitational fields. Nevertheless, the 

gravitational equivalent equilibria will be defined in this section according to the geometry of 

instantaneous Hill’s boundary. 
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For the trajectories flying inside the Earth-Moon system, the instantaneous Hill’s region defined by 

the Hamiltonian function H1 has the similar geometry with the constant Hamiltonian function H0. From 

the geometrical point of view, LL1 point is essentially the critical point connecting the two gravitational 

fields around the Earth and Moon, while LL2 point is the critical point connecting the interior and the 

forbidden regions. Therefore, the equivalent cislunar LL1 point and trans-lunar LL2 point are defined 

respectively as the geometrical critical points of the instantaneous Hill’s boundary for a specified solar 

phasic angle , marked as  TLLx 00
1

 and  TLLx 00
2

  respectively. 

Mathematically, the procedure to compute 
1LLx  and 

2LLx  is demonstrated as follows. The 

Hamiltonian function is an integral of motion written in position and velocity form formulized by Eq. 

(7), and its potential function with only the position term is formulized as: 
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Moreover, the Hill's boundary is dominated by the potential function with its velocity 0r  , known 

also as the zero velocity surface. According to the definition of equivalent equilibrium mentioned 

above, the locations of LL1 and LL2 points can be solved from the partial derivative of U1 with respect 

to the x component, i.e., 
x

U


 1 . 

The geometry of time-dependent Hill’s boundaries, the locations of equivalent equilibria and their 

Hamiltonian values are respectively shown in Fig.2, 3 and 4, where the equivalent cislunar LL1 or LL2 

point is denoted as SBCM-LL1 or SBCM-LL2, compared with CR3BP-LL1 or CR3BP-LL2 in this 

unperturbed model. Due to the solar perturbation, the locations and the Hamiltonian values of 

equivalent equilibria are depending on , i.e.,   2,1,  ixx
ii LLLL   and   2,1,11  iHH ii LLLL  .Thus, 

the initial lunar phasic angle at the epoch time (t=0) is set as s0=00 to produce these figures, and the 

solar phasic angle  ranges from 00 to 3600. 
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Fig.2 Time-dependent Hill’s boundaries and equivalent equilibria: a) the equivalent LL1 point and its Hill's 

boundary; b) the equivalent LL2 point and its Hill's boundary; the initial lunar phasic angle at the epoch 

time (t=0) is s0=00. 
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Fig.3 The relationship between the location of equivalent equilibrium and : a) for the equivalent LL1 point 

case, the location varies from 0.836 to 0.8374 LE-M; b) for the equivalent LL2 point case, the location varies 

from 1.1535 to 1.1565 LE-M; the equivalent cislunar LL1 or LL2 point is denoted as SBCM-LL1 or 

SBCM-LL2, compared with CR3BP-LL1 or CR3BP-LL2 in this unperturbed model; the initial lunar phasic 

angle at the epoch time (t=0) is s0=00. 
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Fig.4 The relationship between the Hamiltonian value of equivalent equilibrium and : a) for the equivalent 

LL1 point case, the Hamiltonian value varies from -1.599 to -1.592 compared with the constant value of 

-1.594 in CR3BP model; b) for the equivalent LL2 point case, the Hamiltonian value varies from -1.594 to 

-1.582 compared with the constant value of -1.586 in CR3BP model; the initial lunar phasic angle at the 

epoch time (t=0) is s0=00. 

From these figures above, the location of LL1 point varies from 0.836 to 0.8374 LE-M, and that of 

LL2 point varies from 1.1535 to 1.1565 LE-M. For the equivalent LL1 point case, the Hamiltonian value 

varies from -1.599 to -1.592 compared with the constant value of -1.594 in CR3BP model; while, for 

the equivalent LL2 point case, the Hamiltonian value varies from -1.594 to -1.582 compared with the 

constant value of -1.586 in CR3BP model. 

2.3 Poincaré map for lunar captured trajectories 

Villac and Scheeres investigated escaping trajectories in the Hill's three-body problem and then 

concluded that the deceleration at the periapsis can reach the minimum energy for the transiting 

trajectories from LL1 or LL2 point to the Moon (Villac and Scheeres 2002). Moreover, the impulse 

maneuver V to decelerate the spacecraft on a lunar circular orbit can be estimated by the Hamiltonian 

value H1 and the radius of periapsis rp of the targeting orbit (being equal to the sum of the radius of 

lunar surface and the altitude of periapsis), as following (Mengali and Quarta 2005): 

         1
22

1 12
1

122
1, Hr

rr
r

r
HrV p

pp
p

p
p 




 
. (15) 

However, for a specified transiting trajectory, H1 and rp are dependent on each other, and their 

relationship will be investigated by Poincaré map in the following section. 
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The technique of Poincaré map is employed to investigate preliminarily the statistical features of 

the fuel cost and captured elements rather than a specified Moon-captured segment transiting LL1 point, 

and the similar case can be implemented for LL2 point. 

Mathematically, the procedure to compute the Poincaré map is presented as follows. For any 

initial value 0 at the epoch time, two sections 1 and 2 are used to define the following Poincaré 

mapping, where the oriented section 1 is located on the hyper-surface 
1LLxx   with the Hamiltonian 

flow defined by Eq. (4) from left to right, and is formulized as 

   0,:
1

1
1  xxx LL
LL  . (16) 

Thus, all the transiting trajectories crossing this section and dominated by the identical Hamiltonian 

value H1 and Eq. (7), are parameterized by the remaining four dimensional coordinates. In this paper, 

this parameterization is implemented by y0 and z0, and two direction angles (, ) ranging within the 

interval  2,2   of the velocity vector, whose magnitude v0 is determined by the Hamiltonian 

value H1. Therefore, the initial conditions on 1 can be written as 

 




























sin   

sincos  

coscos

0000

0000

000 1

vzzz

vyyy

vxxx

tt

tt

tLLt







. (17) 

The procedure to produce the initial conditions is: (i) based on the restriction by Eq. (7), refine the 

interval  maxmin , yy  for the variable y0 from the case that z and v are set to be zeros temporarily, and 

then select randomly a value of y0 from its interval; (ii) refine the interval  maxmin , zz  for the variable 

z0 from the case that v is set to be zeros temporarily, and then select randomly a value of z0 from its 

interval; (iii) calculate the rest variable v0 from Eq. (7) once y0 and z0 are chosen in the steps mentioned 

above, i.e.,  

       




















S

S
zx

T
SS

S

S

ME
LL a

m
i

m
Hyxv rRRA

rrrr
 2

1
2
0

2 1
2

1

-
; (18) 

(iv) select randomly the direction angles  and  from their interval  2,2  . 

In consequence, the initial conditions given by the section 1 are integrated forwards until the 

second section 2 defined as 

 0,0:2  MM rr   (19) 
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where rM is the distance between the Hamiltonian flow and the Moon, which illustrates that the section 

2 terminates the integration routine at the periapsis of the integrated trajectory. Moreover, define a new 

position vector from the flow to the Moon, as 

  Tzyx 1~  r  (20) 

and then rewrite Eq. (17) equivalently, as 

 
  

0~~

~~
~,0~:2 

rr

rrrr
arrrrr

T

TT
TTT  . (21) 

where a is the acceleration in the rotating frame. In the numerical computations performed, all the four 

dimensional coordinates   ,,, 00 zy  are selected independently in the feasible areas, and each of the 

coordinates involves 300 random points. 

The Poincaré map defined by the flow between the two sections, i.e., 12, gives a mapping 

relating all the transiting trajectories from the region near LL1 point defined by the section 1
1
LL  

forward to their first periapsis defined by the section 2. Due to the dimensional reduction by Poincaré 

mapping, all the captured trajectories are refined as the sections of a and b, shown as in Fig.5 for 

H1=3.510-3 and =00. Essentially, b is confined close to LL1 point and corresponds to the center 

manifolds of halo or lissajous orbits near LL1 point, and a is confined close to the Moon and 

corresponds to the unstable manifolds of halo or lissajous orbits. Only the transiting trajectories 

corresponded by a are discussed in this paper as the main topic on Earth-to-Moon transfers. 

 

a

b
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Fig.5 Example of a Poincaré map parameterized by the Cartesian coordinates for H1=3.510-3 and =00 

for LL1 point case: all the captured trajectories are refined as the sections of a and b. b is confined 

close to LL1 point and corresponds to the center manifolds of halo or lissajous orbits near LL1 point; a is 

confined close to the Moon and corresponds to the unstable manifolds of halo or lissajous orbits; only the 

transiting trajectories corresponded by a are discussed in this paper as the main topic on Earth-to-Moon 

transfers; the initial lunar and solar phasic angles at the epoch time (t=0) are s0=00 and =00, and the 

Hamiltonian value of 300 sampling points is set as H1=3.510-3. 

The consequence of all the trajectories corresponded by a could be deduced by their 

parameterization on the Cartesian coordinates or classical orbital elements, which will be presented in 

the following figures. The series of Poincaré map a are illustrated in the following sixteen subgraphes 

of Fig.6 and 7 as a function of the Hamiltonian value H1 and the solar phasic angle , where the 

circles illustrate the lunar surface, and the chaotic points illustrate all the capturing trajectories mapped 

numerically from 300300300300 random points selected on the section 1
1
LL  or 2

1
LL . 

The initial conditions are listed as following: for Fig.5, the initial lunar and solar phasic angles at 

the epoch time (t=0) are s0=00 and =00 respectively, and the Hamiltonian value of 300 sampling 

points is set as H1=3.510-3. For Figs.6 and 7, the initial lunar and solar phasic angles at the epoch 

time (t0=0) are s0=00 and =00, and the subgraphs in a row have the same solar phasic angle ranked in 

00, 900, 1800 and 2700, and the subgraphs in a column have the same Hamiltonian value H1 ranked in 

510-6, 110-4, 110-3 and 510-3. 

Compared with the chaotic points located on the right hand of the Moon in rotating SE-M frame for 

LL1 point case, the chaotic locate on the left hand for LL2 point case, because all the captured 

trajectories reach their first periapsis on the opposite hand of the initial leaving section 1
1
LL  or 2

1
LL . 

The fact above is in accordance with the theory of Keplerian hyperbolic or parabolic orbit that the 

periapsis of the transfer trajectory locates at the opposite hand of the initial leaving velocity at infinity 

V  relative to the targeting planet. 
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Fig.6 Series of Poincaré map a as a function of H1 and  for LL1 point case: the circles illustrate the lunar 

surface, and the chaotic points illustrate all the capturing trajectories mapped numerically from random 

points selected on the section 1
1
LL ; the Hamiltonian value H1 has much more effects on the extrema 

than the solar phasic angle , verified by the Poincaré map in Fig.8; the initial lunar and solar phasic angles 

at the epoch time (t0=0) are s0=00 and =00, and the subgraphs in a row have the same solar phasic angle 

ranked in 00, 900, 1800 and 2700, and the subgraphs in a column have the same Hamiltonian value H1 

ranked in 510-6, 110-4, 110-3 and 510-3. 
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Fig.7 Series of Poincaré map a as a function of H1 and  for LL2 point case: the circles illustrate the lunar 

surface, and the chaotic points illustrate all the capturing trajectories mapped numerically from random 

points selected on the section 2
1
LL ; the Hamiltonian value H1 has much more effects on the extrema 

than the solar phasic angle  as well as LL1 point case; the initial lunar and solar phasic angles at the epoch 

time (t0=0) are s0=00 and =00, and the subgraphs in a row have the same solar phasic angle ranked in 00, 

900, 1800 and 2700, and the subgraphs in a column have the same Hamiltonian value H1 ranked in 510-6, 

110-4, 110-3 and 510-3. 

The characteristics of the Poincaré maps vary as H1 and  vary, which are captured by the 

extremum surfaces of the altitude of periapsis and eccentricity for all the transiting trajectories in Figs.8 

and 9. Inherited from the Poincaré map in Figs.6 and 7, the Hamiltonian value H1 has much more 

effects on the extremum than the solar phasic angle . Moreover, the maximum and minimum are 

illustrated respectively by the top and bottom branches of the extremum surface, and any altitude of 

periapsis or eccentricity inside the two branches is available for a specified captured trajectory, 

demonstrated in shallow-painted areas in the projection subgraphes b and d of Figs.8 and 9. In 
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particular, the maximum and minimum will be equal to each other at some specified values of H1 and 

 when the top and bottom branches encounter with each other smoothly at the left edge of the 

extremum surface. By the subgraphes b and d, it is verified that the Hamiltonian value H1 has much 

more effects on the extremum than the solar phasic angle  inherited from the Poincaré map in Figs.6 

and 7. 

The procedure to produce the characteristics of the altitude of periapsis and eccentricity of 

captured trajectories is presented as following: (i) collect the position and velocity (r, r ) of all the 

captured trajectories at their first periapsis based on the procedure to produce Figs.5, 6 and 7; (ii) 

transform the state (r, r ) from the syzygy SE-M frame to the Moon-center inertial frame, which has the 

same coordinate axis definition as that of the inertial frame IS-E/M or IE-M, but fixes its origin at the 

barycenter of the Earth-Moon system; (iii) convert the updated inertial states into the classical orbital 

elements, including rp and e, based on the lunar gravitational coefficients and Keplerian two body 

theory (the conversion between classical orbital elements and Cartesian coordinates is common and can 

be found in textbooks); (iv) plot the extremum surfaces in Figs.8 and 9 for LL1 and LL2 points 

respectively. 

The initial conditions are listed as following: the initial lunar phasic angle is s0=00, and the solar 

phasic angle  ranges from 00 to 3600, and the Hamiltonian value H1 ranges from 0 to 510-3 (for LL1 

point) or from 0 to 1.110-3 (for LL2 point). 

a) b)  
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c) d)  

Fig.8 Extremum surfaces of altitude of periapsis and eccentricity for all the captured trajectories for LL1 

point case: a) 3-D illustration of extremum surface of altitude of periapsis rp expressed as a function of 

H1 and ; b) 2-D projection onto the (H1, rp) space of the extremum; c) 3-D illustration of extremum 

surface of eccentricity e expressed as a function of H1 and ; d) 2-D projection onto the (H1, e) space of 

the extremum; the Hamiltonian value H1 has much more effects on the extrema than the solar phasic 

angle , inherited from the Poincaré map in Fig.6; the extremum includes both the maximum and 

minimum, which are illustrated respectively by the top and bottom branches of the extremum surface; any 

altitude of periapsis or eccentricity inside the two branches is available for a specified transiting trajectory, 

demonstrated in the shallow-painted areas in the 2-D illustration b and d; the maximum and minimum are 

equal to each other at some specified values of H1 and  when the top and bottom branches encounter 

with each other smoothly at the left edge of the extremum surface; the initial lunar phasic angle is s0=00, 

the solar phasic angle  ranges from 00 to 3600, and the Hamiltonian value H1 ranges from 0 to 510-3. 

a) b)  
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c) d)  

Fig.9 Extremum surfaces of altitude of periapsis and eccentricity for all the captured trajectories for LL2 

point case: a) 3-D illustration of extremum surface of altitude of periapsis rp expressed as a function of 

H1 and ; b) 2-D projection onto the (H1, rp) space of the extremum; c) 3-D presentation of extremum 

surface of eccentricity e expressed as a function of H1 and ; d) 2-D projection onto the (H1, e) space of 

the extremum; the Hamiltonian value H1 has much more effects on the extrema than the solar phasic 

angle , inherited from the Poincaré map in Fig.7; the extremum includes both the maximum and 

minimum, which are illustrated respectively by the top and bottom branches of the extremum surface; any 

altitude of periapsis or eccentricity inside the two branches is available for a specified transiting trajectory, 

demonstrated in the shallow-painted areas in the 2-D illustration b and d; the maximum and minimum are 

equal to each other at some specified values of H1 and  when the top and bottom branches encounter 

with each other smoothly at the left edge of the extremum surface; the initial lunar phasic angle is s0=00, 

the solar phasic angle  ranges from 00 to 3600, and the Hamiltonian value H1 ranges from 0 to 1.110-3. 

A tangential burn V is required to capture a circular orbit about the Moon, which is also regarded 

as the criterion to measure some candidate trajectories from the viewpoint of energy. Considering a 

fixed radius of periapsis captured by the Moon, e.g., rp=1838km (i.e., the altitude of periapsis is equal 

to 100km), only a specified Hamiltonian value H1 is refined from the shallow-painted areas shown in 

Figs. 10a and 10b for an arbitrary [0, 2], and then the minimum Vmin can be obtained from Eq. 

(14) by the refined minimum value of H1. Thus, the improved Poincaré mapping with a fixed rp 

establishes the relationship between Vmin and , as illustrated in Fig.10. Compared with the captured 

Vmin of 695.7m/s yielded by Keplerian two-body model, 656.8m/s by the Hill's model, and 649.2m/s 

(LL1 point) and 652.9m/s (LL2 point) in the CR3BP model (Villac and Scheeres 2002; He and Xu 

2007), the SBCM model can reach the minimum value of 642.9m/s (LL1 point) and 646.7m/s (LL2 

point). 
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Mathematically, the procedures to produce Figs.8 and 9 establish a mapping (or function) from H1 

and  to rp, which is formulized as  ,1Hrp  ; however, for a fixed radius of periapsis *
pr =1838km, 

H1 is parameterized by the only variable , i.e.,  1
1 *


pr

H , which can be solved from numerical 

procedures of Fig.8 and 9. Subsequently, the minimum Vmin can be obtained from Eq. (14) by the 

refined minimum value of H1. The initial conditions to produce Fig.10 are listed as following: the 

initial lunar phasic angle is s0=00, and the solar phasic angle  ranges from 00 to 3600. 
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Fig.10 The relationship between the minimal captured Vmin and  produced by the improved Poincaré 

mapping with a fixed altitude of periapsis rp=1838km: a) the relationship for LL1 point case; b) the 

relationship for LL2 point case; compared with the captured Vmin of 695.7m/s yielded by Keplerian 

two-body model, 656.8m/s by the Hill's model, and 649.2m/s (LL1 point) and 652.9m/s (LL2 point) in the 

CR3BP model (Villac and Scheeres 2002; He and Xu 2007), the SBCM model can reach the minimal 

value of 642.9m/s (LL1 point) and 646.7m/s (LL2 point). 

3. Low-energy Transfers by Transiting Equivalent Libration Points 

Compared with the statistical features of captured orbital elements discussed in the section above, 

the minimum-energy cislunar and trans-lunar trajectories are yielded by transiting LL1 and LL2 points in 

this section. It is presented that the asymptotical behaviors of invariant manifolds approaching to or 

from the libration points or halo orbits are destroyed by the solar perturbation. Moreover, the transfer 

opportunities measured by the solar phasic angle  are achieved for the Earth-escaping and 

Moon-captured segments, respectively. 
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3.1 Low-energy transfers by transiting LL1 point 

For the CR3BP model, the minimum energy trajectory transiting LL1 point is essentially two 

branches of the invariant manifolds originating from this equilibrium point. Thus, the spacecraft may 

follow the stable manifold from the interior region dominated by the Earth's gravity to LL1 point, and 

then leave along the unstable manifold for the exterior region dominated by the lunar gravity. However, 

this transfer trajectory is not practical because its duration is infinite, which is inheriting from the fact 

that the invariant manifolds approach or leave LL1 point asymptotically in an infinite duration. 

The perturbation of the solar gravity employed by the SBCM model will change topologically the 

invariant manifolds to fail in transiting LL1 point for some phasic angles [0, 2]; however, the 

transiting manifolds are preserved for the other values of , inheriting from the time-invariant CR3BP 

model. For the interval of  transiting LL1 point, the asymptotical infinite durations are cut down to 

finite ones by the perturbation, which is quite beneficial to Earth-to-Moon transfers. For the interval of 

 not transiting LL1 point, the perturbed manifolds will lose the phase of orbiting the Earth or Moon, 

i.e., there is no periapsis about the Earth or Moon in this case. Therefore, the gaps between the altitudes 

of periapsis about the Earth and Moon are presented by the phasic angle  in Fig.11. Only the 

intersection between 's intervals transiting from the Earth to LL1 point and another intervals transiting 

from LL1 point to the Moon, i.e., [770, 1090]U[2850, 3420], can drive the trajectories to orbit 

successively the Earth and Moon, and can be also considered as the cislunar transfer opportunities 

which is bounded by the vertical dashed lines in Fig.11. 

The procedure to produce the cislunar transfer opportunities measured by the solar phasic angle  

is presented as follows. Vary  in the interval of [00, 3600] to integrate backwards the SBCM dynamics 

formulized by the differential Eq. (4) backwards to yield the transfer opportunities for Earth-escaping 

segment, and integrate forwards to yield the transfer opportunities for Moon-captured segment. The 

two integrations (forwards and backwards) have the same initial condition of [
1LLx , 0, 0, 0, 0, 0]T. Only 

several subintervals of  can make the integrated trajectories closer to the Earth or Moon, which are 

considered as cislunar or trans-lunar transfer opportunities. The initial conditions are: the initial lunar 

phasic angle is s0=00, and the solar phasic angle  ranges from 00 to 3600, and the initial values to 

integrate forwards and backwards Eq.(4) are equally [
1LLx , 0, 0, 0, 0, 0]T. 
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Fig.11 Cislunar transfer opportunities measured by the solar phasic angle : the solid lines illustrate the 

available altitudes of periapsis about the Earth, and the dash-dotted lines illustrate the available altitudes of 

periapsis about the Moon; the intersection of the intervals transiting from the Earth to LL1 point and from 

LL1 point to the Moon is bounded by the vertical dashed lines, i.e., [770, 1090]U[2850, 3420], which drives 

the trajectories to orbit successively the Earth and Moon; the gaps between the altitudes of periapsis are 

caused by some 's intervals failing the invariant manifolds in transiting LL1 point. 

The three-dimensional cislunar trajectory is presented in SE-M (Fig. 12) and IE-M frames (Fig. 13). 

From the two figures, it is deduced that the z component ranges between -210-3~+210-3 (LE-M), while 

the x and y components range respectively between -0.9~+1.2 and -0.8~+0.8 (LE-M). This conclusion 

can also be summarized from the trajectories transiting LL2 point or halos orbits near the two libration 

points. Thus, for all the cislunar and trans-lunar trajectories discussed in this paper, the z component is 

much smaller than the other components (the z component is only about one thousandth of x or y 

component), which indicates the spatial perturbation has few effects on the low-energy transfer. 

The procedure to produce typical cislunar transfer trajectory transiting LL1 point in the rotating 

SE-M frame is: for some specified value of , integrate Eq.(4) backwards from the equivalent 

equilibrium to obtain the Earth-escaping segment and forwards to achieve the Moon-captured segment 

in the rotating SE-M frame. The transfer trajectories RI in the inertial IE-M frame in Fig.13 are converted 

from the integrated trajectories r in the rotating SE-M frame in Fig.12, based on the transition matrix of 

   rRRRI  zx i . The initial conditions are: the initial lunar phasic angle at the epoch time (t=0) 
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is s0=00 for the four figures, and the initial solar phasic angle  at the epoch time (t=0) is 2860 for 

Figs.12 and 13, and the integral initial values to produce Figs.12 and 13 are [
1LLx , 0, 0, 0, 0, 0]T. 

-0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x [L
E-M

]

y 
[L

E
-M

]

-1 0 1

x 10
-3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

z [L
E-M

]

y 
[L

E
-M

]

-0.5 0 0.5 1

-1

0

1

x 10
-3

x [L
E-M

]

z 
[L

E
-M

]

-0.5

0

0.5

1

-0.5

0

0.5

 

x [L
E-M

]y [L
E-M

]
 

z 
[L

E
-M

]

Escaping from Earth

Captured by Moon

 

Fig.12 Typical cislunar transfer trajectory transiting LL1 point in the rotating SE-M frame for =2860: the 

blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines illustrate the 

segment captured by the Moon; the z component ranges between -210-3~+210-3 (LE-M), while the x and y 

components range respectively between -0.9~+1.2 and -0.8~+0.8 (LE-M), which indicates that the spatial 

perturbation has few effects on the low-energy transfer. 
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Fig.13 Typical cislunar transfer trajectory transiting LL1 point in the inertial IE-M frame for =2860: the 

blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines illustrate the 

segment captured by the Moon; the z component ranges between -210-3~+210-3 (LE-M), while the x and y 

components range respectively between -0.9~+1.2 and -0.8~+0.8 (LE-M), which indicates that the spatial 

perturbation has few effects on the low-energy transfer. 

The semi-major axis and eccentricity of the typical cislunar low-energy trajectory for =2860 are 

illustrated in Fig.14. Due to the solar gravitational perturbation, the duration of the transiting manifold 

is finite. For a cislunar trajectory, the time epoch (t=0) is set as the moment of passing through LL1 

point, and its stable manifold will orbit the Earth before this epoch (i.e., t<0), while its unstable 

manifold will orbit the Moon after this epoch (i.e., t>0). Thus, the osculating semi-major axis and 

eccentricity before the epoch (t<0) should be conversed from the position and velocity in the 

Earth-center inertial frame based on the Keplerian restricted two body theory, while the osculating 

semi-major axis and eccentricity after the epoch (t>0) should be conversed in the Moon-center inertial 

frame. In this case, the jumps at the epoch (t=0) are caused by the fact that the orbital elements before 

and after this epoch are conversed in two different inertial frames, i.e., the former is in the Earth-center 

frame but the latter is in the Moon-center one. 
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Furthermore, the orbital elements after the epoch have more considerable variation in amplitude 

than before the epoch, especially for the eccentricity. It is because the osculating orbital elements are 

achieved only based on the Keplerian restricted two body theory; however, the perturbation from the 

other celestial body's gravity affects the elements greatly, which is referred as the second body in the 

CR3BP or SBCM model. Compared with the lunar perturbation before the epoch, the Earth has more 

perturbation on the osculating orbital elements conversed in the Moon-center inertial frame after the 

epoch, which accounts for more jumps on eccentricity (in the right subgraph of Fig.14) after the epoch 

than before the epoch. This cislunar transiting trajectory is classified as low-energy transfer because 

both the eccentricities before and after the epoch are less than 1, compared to the hyperbolical velocity 

captured by the Moon in classical Hohmann transfer (like Apollo (NASA) and Chang'E (China) 

missions). 

The procedure to produce Fig.14 is: (i) integrate Eq.(4) backwards to obtain the Earth-escaping 

segment and forwards to achieve the Moon-captured segment in the rotating SE-M frame both from the 

same initial condition of [
1LLx , 0, 0, 0, 0, 0]T; (ii) transform the state (r, r ) from the syzygy SE-M frame 

to the Earth-center inertial frame for the Earth-escaping segment, and transform the state (r, r ) from 

the syzygy SE-M frame to the Moon-center inertial frame for the Moon-captured segment; (iii) convert 

the semi-major axis a and eccentricity e before the epoch (t<0) from the Earth-escaping segment based 

on the Earth's gravitational coefficients, and convert a and e after the epoch (t>0) from the 

Moon-captured segment based on the lunar gravitational coefficients. The initial conditions are: the 

initial lunar phasic angle at the epoch time (t=0) is s0=00 for the four figures, and the initial solar 

phasic angle  at the epoch time (t=0) is 2860, and the integral initial values to produce Fig.14 is [
1LLx , 

0, 0, 0, 0, 0]T. 
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Fig.14 Osculating semi-major axis and eccentricity of a cislunar transfer trajectory for =2860: a) the 

history of the osculating semi-major axis; b) the history of the osculating eccentricity. The dash-dotted 

lines illustrate the elements during escaping from the Earth, and the dashed lines illustrate the elements 

during being captured by the Moon, and the vertical solid lines indicate the time epoch (t=0); the 

osculating semi-major axis and eccentricity before the epoch (t<0) are conversed from the position and 

velocity in the Earth-center inertial frame, and the osculating elements after the epoch (t<0) are conversed 

in the Moon-center inertial frame; compared with the lunar perturbation before the epoch, the Earth has 

more perturbation on the osculating orbital elements conversed in the Moon-center inertial frame; this 

cislunar transiting trajectory is classified as low-energy transfer because the eccentricities before and after 

the epoch are less than 1, compared to the hyperbolical velocity captured by the Moon in classical 

Hohmann transfer (like Apollo (NASA) and Chang'E (China) missions). 

The low-energy cislunar transfers transiting LL1 point have the minimum energy, because the LL1 

point has the minimum energy in itself compared to LL2 point and periodic orbits near the two 

equivalent equilibria. 

3.2 Low-energy transfers by transiting LL2 point 

Similar to transiting LL1 point, the solar perturbation will change topologically the invariant 

manifolds to fail in transiting LL2 point for some phasic angles [0, 2]; however, the transiting 

manifolds are preserved for the other values of . For the available interval of , i.e., the trans-lunar 

transfer opportunities for LL2 point can be produced by the procedure developed for LL1 point. The 

initial conditions are: the initial lunar phasic angle is s0=00, and the solar phasic angle  ranges from 00 

to 3600, and the initial values to integrate forwards and backwards Eq.(4) are equally [
2LLx , 0, 0, 0, 0, 

0]T. The trans-lunar transfer opportunities is illustrated in Fig.15. 

Different from the only type of cislunar trajectories transiting LL1 point, all the transfer trajectories 

transiting LL2 point are classified as the inner cislunar trajectories and the outer WSB trans-lunar ones. 

The former is essentially the cislunar transfer trajectories passing through LL1 point, and costs more 

fuels than the cislunar trajectories transiting LL1 point. While the latter has the same geometrical shape 

in the inertial frame as Belbruno's theory and is named after outer trans-lunar WSB trajectories in this 

paper (Belbruno and Miller 1993; Belbruno 2004), which can be considered as the patched 

connection between the invariant manifolds near EL1 (or EL2) point and unstable manifolds near LL2 

point (Koon et al. 2001). Therefore, the former is not a fuel-efficient Earth-to-Moon transfer, and only 

the trans-lunar WSB trajectories are employed in this paper to transit LL2 point. Due to the harsh 
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conditions of two patched manifolds, only a few of intervals can be used to construct the whole WSB 

transfer trajectories from the Earth to LL1 point and then to the Moon, which are bounded by the 

vertical dashed lines in Fig.15, i.e., [21.80, 23.30]U[201.50, 2030]. Compared to the cislunar transfer 

opportunities listed in Fig.11, the WSB transfers have fewer opportunities to transit LL2 point. 
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Fig.15 WSB Transfer opportunities by transiting LL2 point measured by the solar phasic angle : the solid 

lines illustrate the available altitudes of periapsis about the Earth, and the dash-dotted lines illustrate the 

available altitudes of periapsis about the Moon; the intersection of the intervals transiting from the Earth to 

LL1 point and from LL1 point to the Moon is bounded by the vertical dashed lines, i.e., [21.80, 

23.30]U[201.50, 2030], which drives the trajectories to orbit successively the Earth and Moon; the gaps 

between the altitudes of periapsis are caused by some 's intervals failing the invariant manifolds in 

transiting LL2 point. 

The procedures to produce transfer trajectories transiting LL1 point in the rotating SE-M frame and 

the inertial IE-M frame can be employed to produce the two types of inner trans-lunar and outer 

trans-lunar transfer trajectories transiting LL2 point, as shown in Figs.16, 17, 19 and 20. For the four 

figures, the initial lunar phasic angle at the epoch time (t=0) is s0=00, and the integral initial value is 

[
2LLx , 0, 0, 0, 0, 0]T; for Figs.16 and 17, the initial solar phasic angle  at the epoch time (t=0) is 1930; 

and for Figs.19 and 20, the initial solar phasic angle  at the epoch time (t=0) is 2020. 
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Furthermore, the procedures to create the osculating semi-major axis and eccentricity for a 

cislunar transfer trajectory in Section 3.1 can be used to deal with the LL2 point case. The time history 

of the orbital elements is presented in Figs.18 and 21 respectively for typical inner trans-lunar and outer 

WSB trans-lunar transfer trajectories transiting LL2 point. The initial lunar phasic angle and the integral 

initial value are s0=00 and [
2LLx , 0, 0, 0, 0, 0]T for the two figures, and the initial solar phasic angle  

of Fig.18 is 1930, and the initial solar phasic angle  of Fig.21 is 2020. 
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Fig.16 Typical inner trans-lunar transfer trajectory transiting LL2 point in the rotating SE-M frame for 

=1930: the blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines 

illustrate the segment captured by the Moon; the z component ranges between -310-3~+310-3 (LE-M), 

while the x and y components range between -0.9~+1.2 and -0.8~+0.8 (LE-M), which indicates the spatial 

perturbation has few effects on the low-energy transfer. 
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Fig.17 Typical inner trans-lunar transfer trajectory transiting LL2 point in the inertial IE-M frame for 

=1930: the blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines 

illustrate the segment captured by the Moon; the z component ranges between -310-3~+310-3 (LE-M), 

while the x and y components range between -0.9~+1.2 and -0.8~+0.8 (LE-M), which indicates the spatial 

perturbation has fewer effects on the low-energy transfer. 
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Fig.18 Osculating semi-major axis and eccentricity of a cislunar transfer trajectory for =1930: a) the 

history of the osculating semi-major axis; b) the history of the osculating eccentricity. The dash-dotted 

lines illustrate the elements during escaping from the Earth, and the dashed lines illustrate the elements 

during captured by the Moon, and the vertical solid lines illustrate the time epoch (t=0); the osculating 

semi-major axis and eccentricity before the epoch (t<0) are conversed from the position and velocity in the 

Earth-center inertial frame, and the osculating elements after the epoch (t<0) are conversed in the 

Moon-center inertial frame; compared with the Moon before the epoch, the Earth has more perturbation on 

the osculating orbital elements conversed in the Moon-center inertial frame; this cislunar transiting 

trajectory is classified as low-energy transfer because the eccentricities before and after the epoch are less 

than 1, compared to the hyperbolical velocity captured by the Moon in classical Hohmann transfer (like 

Apollo (NASA) and Chang'E (China) missions). 

 

Fig.19 Typical outer trans-lunar transfer trajectory transiting LL2 point in the rotating SE-M frame for 

=2020: the blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines 

illustrate the segment captured by the Moon; the z component ranges between 0~+0.12 (LE-M), while the x 

and y components range between -4~+4 and -4~+4 (LE-M), which indicates the spatial perturbation has few 

effects on the low-energy transfer. 
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Fig.20 Typical outer trans-lunar transfer trajectory transiting LL2 point in the inertial IE-M frame for 

=2020: the blue solid lines illustrate the segment escaping from the Earth, and the red dash-dotted lines 

illustrate the segment captured by the Moon; the z component ranges between 0~+0.12 (LE-M), while the x 

and y components range between -2.7~+1.3 and -3.4~+1.2 (LE-M), which indicates the spatial perturbation 

has few effects on low-energy transfer; this type of transfer trajectories in the inertial frame has the same 

geometrical shape as Belbruno's WSB theory (Belbruno and Miller 1993; Belbruno 2004), which is 

renamed as outer WSB trajectories as well. 
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Fig.21 Osculating semi-major axis and eccentricity of a cislunar transfer trajectory for =2020: a) the 

history of the osculating semi-major axis; b) the history of the osculating eccentricity. The dash-dotted 

lines illustrate the elements during escaping from the Earth, and the dashed lines illustrate the elements 

during captured by the Moon, and the vertical solid lines illustrate the time epoch (t=0); the osculating 

semi-major axis and eccentricity before the epoch (t<0) are conversed from the position and velocity in the 

Earth-center inertial frame, and the osculating elements after the epoch (t<0) are conversed in the 

Moon-center inertial frame; compared with the lunar perturbation before the epoch, the Earth has more 

perturbation on the osculating orbital elements conversed in the Moon-center inertial frame; this cislunar 

transiting trajectory is classified as low-energy transfer because the eccentricities before and after the 

epoch are less than 1, compared with the hyperbolical velocity captured by the Moon in classical Hohmann 

transfer (like Apollo (NASA) and Chang'E (China) missions). 

The cislunar transfer trajectories transiting LL1 point have a total opportunities measured by 

=890, while the outer WSB trans-lunar trajectories have much fewer opportunities of =30. Thus, 

an effective way to increase the transfer opportunities for the WSB trajectories is to transit a halo orbit 

near LL2 point instead of itself. 

4. Low-energy Transfers by Transiting Halo Orbits 

Compared with the only variable (i.e., ) to design a transfer trajectory transiting the libration 

point, the halo orbit is employed to increase the transfer opportunities by introducing another variable 

(i.e., serial points of halo orbit). Subsequently, a global investigation on the Earth-escaping and the 

Moon-captured opportunities is implemented respectively for transiting LL1 and LL2 points in this 

section. 
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A halo orbit is a periodic three-dimensional orbit near LL1 and LL2 points, and is symmetrical 

about the x-z plane in the rotating SE-M frame (Xu and Xu 2012), shown in Fig.22. A halo orbit in the 

Earth-Moon system can be characterized by the maximum of its y component or its orbital period TH. 

Thus, all points on a specified halo orbit can be marked by the phase of halo orbit Ni , where i is 

the serial number of this point measured clockwise from the starting point which is located closest to 

the Earth on the x axis, and N=360 is the total number of evenly spaced points in time selected in this 

paper. Even through there is no halo orbit under the solar perturbation in SBCM model, the periodic 

orbit is still acting as a powerful tool to investigate the transfer trajectories in this paper, because both 

the cislunar and the trans-lunar trajectories are transiting it rather than staying on it (Koon et al. 2001; 

Koon et al. 2007). The algorithm to produce halo orbit is beyond the scope of this paper, which can be 

found in the references (Richardson 1980; Xu et al. 2013). The maximal values of the y components 

of halo orbits in Fig.22 are respectively 40142.16km near LL1 point and 33818.07km near LL2 point. 
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Fig.22 Halo orbits near LL1 and LL2 points and serial points on the orbits: the maximal values of the y 

components of halo orbits are respectively 40142.16km near LL1 point and 33818.07km near LL2 point; 

the serial evenly spaced points in time are selected clockwise from the starting point; the starting point 

locates closest to the Earth on the x axis. 
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4.1 Low-energy transfers by transiting halo obits near LL1 point 

In CR3BP model, the invariant manifolds of a halo orbit near LL1 point can be classified into four 

branches as S
EW , u

EW , S
MW  and u

MW , where the subscript E and M indicate this branch leaves from/to 

the Earth and Moon respectively, and the superscript s and u indicate the branch approaches the halo 

orbit forwards and backwards respectively. Thus, the branches S
MW  and u

EW  construct a whole 

Moon-to-Earth transfer trajectory labeled by light-colored lines in the right subgraph of Fig.23, while 

S
EW  and u

MW  construct a whole Earth-to-Moon transfer trajectory labeled by dark-colored lines in the 

right subgraph of Fig.23; however, both of the two trajectories are not practical due to the infinite 

durations. The algorithm to produce invariant manifolds of halo orbit is beyond the scope of this paper, 

which can be found in the references (Howell et al. 1997; Howell et al. 2006). The maximal values of 

the y components of halo orbits in this figure are respectively 40142.16km near LL1 point and 

33818.07km near LL2 point. 

a) b)  

Fig.23 Invariant manifolds of a halo orbit and cislunar transfer trajectories constructed from these 

manifolds: a) S
EW  illustrates the stable branch leaving from the Earth to the halo orbit, and u

EW  

illustrates the unstable branch leaving from the halo orbit to the Earth, and S
MW  illustrates the stable 

branch leaving from the Moon to the halo orbit, and u
MW  illustrates the unstable branch leaving from the 

halo orbit to the Moon; b) the branches S
MW  and u

EW  construct a whole Moon-to-Earth transfer trajectory 

labeled by light-colored lines, while S
EW  and u

MW  construct a whole Earth-to-Moon transfer trajectory 

labeled by dark-colored lines. 
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Fortunately, the perturbation of the solar gravity employed by the SBCM model may cut down the 

infinite durations of some branches to finite ones, which is quite practical for Earth-to-Moon transfers. 

For the pairs (,)[0, 2][0, 1] not transiting halo orbit near LL1 point, the perturbed manifolds will 

lose the phase of orbiting the Earth or the Moon, i.e., there is no periapsis about the Earth or the Moon 

in this case. Only the intersecting pairs of transiting from the Earth to halo orbit and another intervals 

transiting from halo orbit to the Moon, i.e., ([950, 1500]U[2620, 3450])[0, 1] and ([1000, 2000]U[2700, 

300])([0.16, 0.26]U[0.47, 0.58]), can drive the trajectories to orbit successively the Earth and Moon, 

which is considered as the cislunar transfer opportunities shown in Fig.24. 

The procedure to produce the transfer opportunities is presented as following: (i) vary  in the 

interval of [00, 3600] and the phase of serial points on halo orbit [0, 360]/360 to integrate the SBCM 

dynamics formulized by the differential Eq. (4) backwards to yield the Earth-escaping segment, and 

integrate forwards to yield the Moon-captured segment; (ii) collect the altitudes of periasis when the 

Earth-escaping or the Moon-captured segments reach their first periasis, and then draw them by the 

contour-map of rp, which are considered as cislunar or trans-lunar transfer opportunities; (iii) the two 

integrations (forwards and backwards) have the same initial condition of X= [r, r ]| of a serial point on 

the halo orbit. Only some subintervals of  and  can make the integrated trajectories closer to the Earth 

or Moon. The initial conditions are: the initial lunar phasic angle is s0=00, and the solar phasic angle  

ranges from 00 to 3600, and the phase of serial points on halo orbit  ranges from 0 to 1, and the 

maximal y component of halo orbit to integrate forwards and backwards Eq.(4) is 40142.16km. 
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a)  

b)  

Fig.24 Contour-map of transfer opportunities for trans-lunar WSB trajectories: a) transfer opportunities for 

the Earth-escaping segments; b) transfer opportunities for the Moon-captured segments; the solar phasic 

angle  has more effects on the existence of the trajectories than the phase of halo orbit, and most of them 
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are located within the (, ) pairs of ([950, 1500]U[2620, 3450])[0, 1] (for the Earth-escaping segment) and 

([1000, 2000]U[2700, 300])([0.16, 0.26]U[0.47, 0.58]) (for the Moon-captured segment); all the cislunar 

trajectories mapped from the contour-map have the similar geometrical shape with the typical trajectories 

shown in Fig.25. 

The procedures to produce transfer trajectories transiting LL1 point in the rotating SE-M frame can 

be employed to produce the cislunar transfer trajectories transiting halo orbit in Fig.25: for some 

specified pair (, ), integrate Eq.(4) backwards from a halo orbit to obtain the Earth-escaping segment 

and forwards to achieve the Moon-captured segment in the rotating SE-M frame. The initial conditions 

are listed as following: the initial lunar and solar phasic angle at the epoch time (t=0) is s0=00 and 

=1500 respectively, and the two integrations (forwards and backwards) have the same initial condition 

X= [r, r ]|=82/360 of a serial point on the halo orbit with its maximal y component equal to 

40142.16km. 

-0.5 0 0.5 1

-0.5

0

0.5

x [L
E-M

]

y 
[L

E
-M

]

-0.2 0 0.2
-1

-0.5

0

0.5

1

z [L
E-M

]

y 
[L

E
-M

]

-0.5 0 0.5 1

-0.5

0

0.5

x [L
E-M

]

z 
[L

E
-M

]

-0.5
0

0.5
1

-0.5

0

0.5

-0.1
0

0.1

 

x [L
E-M

]y [L
E-M

]
 

z 
[L

E
-M

]

Escaping from Earth

Captured by Moon

Halo orbit at LL
1
 point

 

Fig.25 Typical cislunar transfer trajectory transiting a halo obit near LL1 point in the rotating SE-M frame 

for =1500 and =82/360: the blue solid lines illustrate the segment escaping from the Earth, and the red 

dash-dotted lines illustrate the segment captured by the Moon, and the black thick lines illustrate the halo 

orbit; the x and y components range between -0.9~+1.2 and -0.8~+0.8 (LE-M), while the z component 
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ranges between -1.1~+1.1 (LE-M), which is larger than the z component of a trajectory transiting LL1 point; 

the maximal y component of the halo obit is 40142.16km. 

It is worth mentioning that the numerical simulations indicate all the cislunar trajectories mapped 

from the contour-map have the similar geometrical shape with the typical trajectories shown in Fig.25. 

4.2 Low-energy transfers by transiting halo obits near LL2 point 

Similar to transiting LL2 point, the inner transfer trajectories transiting halo orbit near LL2 point is 

essentially the cislunar transfer trajectories passing through LL1 point, and costs more fuels than the 

cislunar trajectories achieved in Section 4.1. Hence, only the trans-lunar WSB trajectories are 

employed in this paper so as to construct some practical transfer trajectories. According to the work of 

Koon et al. (2001), there are smooth-patched manifolds on a Poincaré section to drive the spacecraft 

flying from the Earth to another halo orbit near EL1 (or EL2) point and then to the targeting halo orbit 

near LL2 point. Thus, the following investigation will verify that both the invariant manifolds of halo 

orbits near EL1 and EL2 points can be used to construct the whole trans-lunar WSB trajectories. 
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Fig.26 The conceptual geometry of two smooth-patched manifolds on a Poincaré section: both the invariant 

manifolds of halo orbits near EL1 and EL2 points can be used to construct the whole trans-lunar WSB 

trajectories. 

The procedure developed for the transfer opportunities in the above section can also be used to 

create the colorful Porkchop-like contour-maps of transfer opportunities for the Earth-escaping and the 

Moon-captured segments transiting halo orbit near LL1 point. The initial conditions are: the initial lunar 

phasic angle is s0=00, and the solar phasic angle  ranges from 00 to 3600, and the phase of serial 
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points on halo orbit  ranges from 0 to 1. The maximal y component of halo orbit to integrate forwards 

and backwards Eq.(4) is 33818.07km. 

a)  

b)  

Fig.27 Contour-map of transfer opportunities for trans-lunar WSB trajectories: a) transfer opportunities for 

the Earth-escaping segments; b) transfer opportunities for the Moon-captured segments; the solar phasic 

angle  has more effects on the existence of the trajectories than the phase of halo orbit, and most of them 
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are located in the 's intervals of [850, 1650]U[2620, 3300])[0, 1] (for the Earth-escaping segment) and 

([100, 920]U[1920, 2680])([0, 0.26]U[0.57, 0.66]) (for the Moon-captured segment); the phase of halo 

orbit has more effects on the altitudes of periapsis about the Earth and Moon; the points labeled as a, b, ..., 

n, are mapped into 14 typical trans-lunar WSB trajectories, as shown in the rotating SS-E/M frame in Fig. 28; 

the maximal y component of the halo obit is 33818.07km. 

Only the intersecting pairs of transiting from the Earth to halo orbit and another intervals 

transiting from halo orbit to the Moon, i.e., ([850, 1650]U[2620, 3300])[0, 1] and ([100, 920]U[1920, 

2680])([0, 0.26]U[0.57, 0.66]), can drive the trajectories to orbit successively the Earth and Moon, and 

is considered as the cislunar transfer opportunities shown in Fig.27. The points labeled as a, b, ..., n, are 

mapped into 14 typical trans-lunar WSB trajectories in the rotating SS-E/M frame, which can be 

produced by the following procedure: (i) integrate Eq.(4) backwards to obtain the Earth-escaping 

segment and forwards to achieve the Moon-captured segment in the rotating SE-M frame both from the 

same initial condition of a serial point on the halo orbit; (ii) the transfer trajectories RI in the SS-E/M 

frame are converted from the integrated trajectories r in the rotating SE-M frame, based on the following 

transition matrix of RI=Rx(-i)Rx(-)r +AS. 

The initial conditions are listed as follows. The initial lunar phasic angle at the epoch time (t=0) is 

s0=00, and the initial condition X= [r, r ]| is selected from a serial point with its phase  on the halo 

orbit. All the subgraphs are produced by the halo orbit with its maximal y component equal to 

33818.07km. The initial phase of serial points  and the solar phasic angle  at the epoch time (t=0) 

are: a) =345/360 and =100; b) =350/360 and =330; c) =177/360 and =960; d) =13/360 and 

=130; e) =360/360 and =530; f) =352/360 and =350; g) =352/360 and =330; h) =52/360 and 

=2050; i) =24/360 and =1940; j) =220/360 and =130; k) =62/360 and =1910; l) =51/360 and 

=2050; m) =187/360 and =890; n) =189/360 and =890. 
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Fig.28 Typical trans-lunar WSB trajectories in the SS-E/M frame: all the subgraphes correspond to the points 

labeled in Figs. 20 and 21; the phase of halo orbit and the solar phasic angle are selected as: a) =345/360 

and =100; b) =350/360 and =330; c) =177/360 and =960; d) =13/360 and =130; e) =360/360 and 

=530; f) =352/360 and =350; g) =352/360 and =330; h) =52/360 and =2050; i) =24/360 and 

=1940; j) =220/360 and =130; k) =62/360 and =1910; l) =51/360 and =2050; m) =187/360 and 

=890; n) =189/360 and =890. a, b, ..., g are classified as the trans-lunar WSB trajectories passing 

through EL1 point, and h, i, ..., n are classified as the ones passing through EL2 point; the circles indicate 

the lunar surface; the maximal y component of the halo obit is 33818.07km. 

Because of the conclusion in Section 2.2 that all the cislunar and trans-lunar trajectories have the z 

component much smaller than the other components, only the x-y view is presented for the labeled 

points, a, b, ..., n. The 14 typical trajectories are classified as the ones passing through EL1 point (i.e., a, 

b, ..., g) and the others passing through EL2 point (i.e., h, i, ..., n). Thus, both EL1 and EL2 points can be 

employed to join with the unstable manifolds of a halo or a Lyapunov orbit near LL2 point in driving 

the spacecraft from the Earth to the Moon, which is according to the Koon et al.’s conclusion (Koon et 

al. 2001). In the SS-E/M frame, the Earth, EL1 and EL2 points are located respectively on the  axis at 

388.810, 384.918 and 392.728 based on the length unit normalization LE-M mentioned in Section 2.1. 

The temporarily captured segment of the trans-lunar trajectory has fewer loops orbiting the Moon but 

requires more energy than the cislunar one. Even so, the deceleration from the temporary capture to the 

permanent capture is small than Hohmann transfer. 

5. Conclusion 

The low-energy cislunar and WSB trajectories are investigated in this paper from the viewpoint of 

the cislunar libration point (LL1) and trans-lunar libration point (LL2), respectively. According to the 

geometry of instantaneous Hill’s boundary, the equivalent LL1 point is defined as the critical point 

connecting the two gravitational fields around the Earth and Moon, while the equivalent LL2 point is 
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defined as the critical point connecting interior and forbidden regions. The locations of the equivalent 

equilibria and their Hamiltonian values are solved from the partial derivative of the potential function 

with respect to the x component. 

The systematical discussion on the Moon-captured energy in the frame of a spatial analytical 

four-body model (i.e., SBCM) is implemented by the numerical Poincaré mapping, which is only 

focusing on the statistical features of the fuel cost and captured elements (like altitude of periapsis and 

eccentricity) rather than a specified Moon-captured segment.  

The minimum-energy cislunar and trans-lunar trajectories are yielded by transiting LL1 and LL2 

points respectively in Chapter 3. The trajectories transiting LL2 point are classified into the inner 

cislunar type essentially passing through LL1 point, and the outer WSB type connecting the invariant 

manifolds near EL1 (or EL2) point and unstable manifolds near LL2 point. Moreover, it is demonstrated 

that the solar phasic angle  has positive affects on the transfer opportunities: for the cislunar case 

transiting LL1 point, a whole Earth-to-Moon transfer trajectory can be achieved only within the 's 

interval [770, 1090]U[2850, 3420]; for the outer WSB case transiting LL2 point, a whole Earth-to-Moon 

transfer trajectory can be achieved only within the 's interval [21.80, 23.30]U[201.50, 2030]. 

Compared with the only variable (i.e., ) to construct a transfer trajectory transiting the libration 

point, the halo orbit is employed to increase the transfer opportunities by introducing another variable 

(i.e., serial points of halo orbit). Subsequently, a global investigation on the Earth-escaping and 

Moon-captured opportunities is implemented for practical transfer trajectories transiting halo orbits 

near LL1 and LL2 points respectively. For the cislunar case transiting halo orbit near LL1 point, a whole 

Earth-to-Moon transfer trajectory can be achieved only within the pairs (, ) of ([950, 1500]U[2620, 

3450])[0, 1] and ([1000, 2000]U[2700, 300])([0.16, 0.26]U[0.47, 0.58]); for the outer WSB case 

transiting halo orbit near LL2 point, a whole Earth-to-Moon transfer trajectory can be achieved only 

within the pairs (, ) of ([850, 1650]U[2620, 3300])[0, 1] and ([100, 920]U[1920, 2680])([0, 

0.26]U[0.57, 0.66]). 
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